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NON-LINEAR ORBIT DETERMINATION METHODS 

By Ali Hasan Nayfeh 
Heliodyne Corporat ion,  Van Nuys, California 

A non-l inear  co r rec t ion  method f o r  o rb i t  determinat ion 
using range ,  azimuth,  and elevation data i s  p resented  and justif ied 
mathemat ica l ly  and numerical ly .  
methods,  such a s  the l ea s t - squa res ,  the max imum likelihood, and 
the Kalman,  this  method holds in  the non-l inear ,  a s  well  a s  in  the  
l inear  regions.  
and n o r m a l  m a t r i c e s  and, hence,  avoids the p rob lems  assoc ia ted  
with calculating and inverting them. The convergence and accu-  
r a c y  of the method have been demonstrated by calculations m a d e  
on s imulated o rb i t s  with varying levels  of noise .  
demons t r a t e  that  the proposed method i s  non-l inear  and can be 
used as an editing procedure  because i t  converges despi te  the com-  
bined effect  of v e r y  bad r e fe rence  orb i t s ,  ex t r eme ly  high levels  of 
noise ,  wild data  points,  and c r i t i ca l  o rb i t s .  The calculations show 
a l so  tha t  the e r r o r s  of the resu l tan t  epoch s ta te  vec tors  a r e  indeed 
v e r y  smal l .  

In cont ras t  with conventional 

Moreover ,  th i s  method does not r equ i r e  t rans i t ion  

The calculations 

The  method h a s  been extended f o r  the determinat ion of a e r o -  
dynamic p a r a m e t e r s  such a s  p. 
range,  azimuth,  and elevation d a t a  show that the method converges 
and the  e r r o r s  a r e  sma l l  i r r e spec t ive  of the bad initial conditions 
f o r  the  t r a j e c t o r y  and fo r  the p. 

Numerical  calculations using 

The  method h a s  been extended a l s o  to c i s - lunar  o rb i t s  where  
range  and range  r a t e  a r e  the only rel iable  measu remen t s .  In th i s  
c a s e ,  the  problem reduces  to  the problem of determining a n  o rb i t  
using range  and range  r a t e  at t h r e e  different  t imes  which can be 
taken  to  be c lose  to  each o ther .  The method of quasi l inear izat ion 
i s  applied to  th i s  problem. In carrying out th i s  method, a solution 
f o r  a s e t  of s ix  quadrat ic  a lgebraic  equations needs to be obtained. 
The n u m e r i c a l  solution of these sets  of a lgebra ic  equations can be  
obtained using Kane '  s ref inement  of the  Newton-Raphson procedure .  
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An a l te rna t ive  method based on quasi l inear izat ion h a s  been 

presented f o r  orbi t  determinat ion in  genera l  and c i s - lunar  o rb i t s  
in par t icular .  Moreove r ,  non-l inear  l ea s t - squa res  and max i -  
mum likelihood methods have been presented.  However,  work 
needs to be done to p r o g r a m  these  al ternat ive methods and com-  
pare  the i r  numer ica l  r e su l t s .  

INTRODUCTION 

Data per ta ining to e i ther  the posit ion o r  the velocity o r  both 
of a space  vehicle can  be obtained by i t s  t racking.  
of the kind of s e n s o r  being used, the da ta  i s ,  however ,  cor rupted  
by noise. Thus,  redundant data  mus t  be used fo r  the de t e rmina -  
tion of the best  e s t ima te  of the  orb i ta l  p a r a m e t e r s  and any o ther  
unknown p a r a m e t e r s  in the equations of motion. 

I r r e spec t ive  

To de termine  the bes t  es t imate  of these  p a r a m e t e r s  f r o m  
the noisy data ,  many f i l t e r ing  and est imat ion methods based  on 
the differential  co r rec t ion  method have been devised. 
cornrnonly used methods a r e  the l ea s t - squa res  ( r e f s .  1 and 2 ) ,  
the  maximum likelihood ( r e f s .  1 and 2 ) ,  and the Kalman f i l t e r  
( r e f s .  2 and 3 ) .  
f o r  these orb i ta l  p a r a m e t e r s  and, hence,  a nominal orbi t .  The 
orb i ta l  p a r a m e t e r s  a r e  per turbed  and the o rb i t  i s  expanded i n  a 
Taylor s e r i e s  expansion about t h i s  nominal orbi t .  
in  the orb i t  a s  a function of t ime  a r e  re la ted  to the per turba t ions  
in the orb i ta l  p a r a m e t e r s  through what i s  cal led a t rans i t ion  ma- 
t r ix .  
depending on the obse rvab le s ,  to r e l a t e  the deviations in  the ob- 
se rvables  to  the o rb i t a l  p a r a m e t e r  per turba t ions .  
(observed minus computed va lues)  a r e  opt imized i n  s o m e  fashion. 
In the l ea s t - squa res  method,  the bes t  e s t ima te  min imizes  the 
sum of the squa res  of the r e s idua l s .  
a s sumes  that the e r r o r s  a r e  no rma l ly  d is t r ibu ted  and, hence ,  the 
best  es t imate  max imizes  the likelihood function. 
hand, the Kalman f i l t e r  d i f fe rs  f r o m  the max imum likelihood by 
assuming that the bes t  e s t ima te  i s  a l i nea r  funct ion of the p rev i -  
ous es t imate ,  a s  well a s  the m e a s u r e d  data.  With these  c r i t e r i a ,  
l inear  simultaneous equations a r e  obtained to solve fo r  the orb i ta l  
pa rame te r  per turbat ions.  
the pcr turbat ions,  genera l ly  by invert ing the so-cal led n o r m a l  

The m o s t  

These  methods s t a r t  by assuming nominal  values  

The deviations 

This  t rans i t ion  m a t r i x  i s  multiplied by another  m a t r i x ,  

The r e s idua l s  

The m a x i m u m  likelihood 

On the o the r  

These  equations have  to be solved f o r  

2 



A\ 

mat r i ces .  
r e f e rence  o rb i t  i s  obtained and the p rocess  i s  i t e ra t ive ly  repea ted  
until the  i te ra t ion  hopefully converges.  

Then the orb i ta l  pa rame te r s  a r e  co r rec t ed  and a new 

The  i te ra t ion  procedure  may  diverge and lead to i r r e l evan t  
answers  in c a s e s  where  the l inear i ty  assumption i s  violated ( r e f s .  
4 - 6) .  These  c a s e s  a r i s e  i f  the initial conditions a r e  such that 
the r e fe rence  o rb i t  i s  not nominal,  o r  the da ta  i s  corrupted by 
e i ther  high levels  of no ise  o r  wild points, o r  the  no rma l  m a t r i x  
i s  n e a r  s ingular .  

T h e r e  a r e  some  disadvantages associated with the use  of 
t rans i t ion  and n o r m a l  m a t r i c e s .  Time and effort  a r e  needed fo r  
calculating the pa r t i a l  der ivat ives  constituting the t rans i t ion  ma- 
t r i ce s .  
t ions (posi t ion and velocity vec to r s ) ,  we need to calculate  a 6 X 6 
ma t r ix .  Thus,  we need to solve 36 f i r s t - o r d e r  different ia l  equa- 
tions. In genera l ,  t hese  equations have to be solved numerical ly .  
Hence, the use  of t rans i t ion  m a t r i c e s  r equ i r e s  the solution of 4 2  
f i r s t - o r d e r  equations instead of 6 equations only. Moreover ,  the 
invers ion  of the n o r m a l  m a t r i c e s  m a y  blow up i f  some  of the o r -  
b i ta l  p a r a m e t e r s  happen to be n e a r  para l le l  and, hence,  the n o r -  
m a l  m a t r i x  n e a r  s ingular .  Although the orb i ta l  p a r a m e t e r s  m a y  
be theore t ica l ly  independent (given an  infinite number  of signif- 
i can t  f i gu res ) ,  they m a y  become dependent and, hence,  the n o r -  
mal matrix becomes  s ingular  because of the number  of significant 
f i gu res  that can be obtained using a computer.  Also,  the inve r -  
s ion of m a t r i c e s  s u f f e r  f r o m  high cumulative round-off e r r o r s  due 
to the l a r g e  number  of a r i thmet ica l  operat ions needed. 

F o r  example,  if we want to de te rmine  the ini t ia l  condi- 

To de te rmine  the bes t  es t imate  of the orb i t  that  p a s s e s  
through noisy da ta ,  a non-linear cor rec t ion  method was developed 
by Hunt and Nayfeh ( r e f .  7).  
p rob lems  assoc ia ted  with conventional methods ,  such a s  the 
Bayes es t imat ion  and the Kalman f i l ter ,  because i t  i s  a non-l inear  
method and i t  does  not use t ransi t ion and n o r m a l  m a t r i c e s .  

This  fi l tering method avoids the 

The  method i s  based upon the idea that i f  the  exact o rb i t  
could be  de te rmined ,  the res idua ls  (defined a s  m e a s u r e d  minus  
computed values)  would r ep resen t  the noise.  
dom,  then the  coefficients of any polynomial that  f i ts  through the 
r e s i d u a l s  i n  the l ea s t - squa res  sense m u s t  vanish. Hence, the 
t i m e  a x i s  p a s s e s  through the residuals  i n  the l ea s t - squa res  sense.  

If th is  noise i s  r a n -  

3 



Thus ,  a f te r  determining an  orb i t ,  one usually checks how well  the * 

orbit  has  been de termined  by plotting the res idua ls  and seeing how 
well they a r e  dis t r ibuted about the t ime  axis .  
the f ac t  that  the t ime  ax is  mus t  p a s s  through the r e s idua l s  in 
leas t - squares  sense  a s  a check on how well we de termine  the 
orbi t ,  we use th i s  fac t  in o r d e r  to de te rmine  the orbi t .  Thus,  we 
fit the  res idua ls  into a polynomial in l ea s t - squa res  sense  and use 
i t  to c o r r e c t  the ini t ia l  conditions of the assumed orb i t  so that the 
coefficients of the next polynomial l ea s t - squa res  fit to the new 
residuals  a r e  decreased .  

L 

Rather  than using 

In this  paper  we will desc r ibe  the non-l inear  f i l t e r  and then 
we will extend i t  to de t e rmine  the o rb i t  a s  well  a s  any pe r tu rba -  
tive p a r a m e t e r s .  
of c i s - lunar  orb i t s .  We p resen t  an  a l te rna t ive  method based on 
quasil inearization. Final ly ,  we propose non-l inear  l ea s t - squa re  s 
and maximum likelihood methods f o r  orb i t  determinat ion.  

We will extend the method f o r  the determinat ion 

A NON-LINEAR ORBIT DETERMINATION METHOD 

In this  sect ion,  we will f i r s t  desc r ibe  the non-l inear  o rb i t  
determinat ion method, and then justify i t  mathemat ica l ly  a s  wel l  
a s  numerical ly .  

Descr ip t ion  of Method 

The following descr ip t ion  of the method a s s u m e s  that the  
data i s  given in  Car t e s i an  coordinates .  If the da ta  i s  given i n  
range, azimuth,  and elevation, one can  e i ther  t r a n s f o r m  t h e s e  
into Car t e s i an  coordinates  o r  wi.ite the  equations of motion in  
spher ica l  coordinates.  In the  l a t t e r  c a s e ,  the range ,  az imuth ,  
and elevation take  the p lace  of the x, y ,  and z coordinates .  
method cons is t s  of the following s teps:  

The 

Determinat ion of a r e f e r e n c e  orbi t .  - The method i s  an 
i te ra t ive  o r  r e c u r s i v e  p rocedure ,  and, thus ,  we need to a s s u m e  
a n  orbit  (cal led r e fe rence  o rb i t )  t o  s t a r t  the calculation. 
culate the r e fe rence  orb i t ,  we a s s u m e  va lues  f o r  the in i t ia l  con- 
ditions (init ial  position and in i t ia l  veloci ty  v e c t o r s )  and then 
integrate  the equations of motion. 
the  procedure  converges to the r igh t  o rb i t ,  i r r e s p e c t i v e  of how 
bad the ini t ia l  conditions used in  calculat ing the  r e f e r e n c e  o rb i t  

To ca l -  

Since the method i s  non- l inear ,  

4 



were ,  as  demonstrated numer ica l ly  on pages 11 through 13. Thus,  
any values can be used fo r  the initial conditions to calculate the 
re ference  orbi t .  

However, we can always do bet ter  than a m e r e  guess  of the 
ini t ia l  conditions f o r  t he  re ference  orbit ,  and, thus,  avoid the un- 
n e c e s s a r y  delaying of the convergence. F o r  example,  we start by 
determining a two-body orb i t  with an inverse  square  cen t r a l  field. 
This t w ~ - h o d y  o rb i t  can be obtained using a Gaussian,  Lamber t ian ,  
o r  Gibbsian method employing, f o r  example, two -positional data  
points and t h e i r  separat ion times. Using th i s  orb i t ,  we can d e t e r -  
mine a n  epoch state vector ( ini t ia l  position and velocity vectors) .  
Using th i s  epoch s ta te  vector ,  we integrate the ful l  o rb i ta l  equa- 
t ions of motion and we take the resulting orb i t  a s  the r e fe rence  
orb i t  . 

Leas t - squa res  f i t  of the residuals.  - The res idua l  d i f fe r -  
ences  between the measu red  d iscre te  data  points and the values 
obtained f r o m  the computed reference o rb i t  at the corresponding 
t imes  a r e  formed.  These  res idua ls  A r j  at t ime  t . a r e  fi t ted in 
the l ea s t - squa res  sense  to  a l i nea r  or  a parabol ic  t ime-dependent 
vector.  
Abot.  - Thus,  

J 

F o r  demonstrat ion,  we choose a l i nea r  vector  A&, + 

- (Aa + A b  t )] 
-0 -0 j Aa + A b  t 

is  minimum. Minimizing with respec t  t o  Aa and Ab yields 
-0 -0 

E[... - (Aa -0 + A b  - 0 j  t I] = 0,  
3 

j 

and 

Etj [Ar. - (Aa -0 + A b  -0 t j )] = 0. 
3 

j 

5 



Solving these equations for  Aa and Ab yields 
-0 - 0  

Aa 
-0 

Ab 
-0 

-1 = c  

-1 . where C i s  the inverse  of the m a t r i x  C which i s  given by 

C =  

c 
j 

Epoch s ta te  vector updating. - Once A&, and A b o  have been 
f o u n d ,  a new epoch s ta te  vector is  fornied. Thus ,  

a = a  + A a ,  
-1 -0  -0 

and 

b = b  + A b .  -1 -0 -0 

( 5 )  

Only the init ial  conditions were  modified because a poly- 
nomial time-dependent vector is  not a solution of the f u l l  o rb i t a l  
equations of motion. Moreover ,  even i f  it i s  a solution of these  
equations, we cannot obtain a solution by adding th i s  polynomial 
to the r e fe rence  orbit  because the o rb i t a l  equations of motion a r e  
non-linear and the pr inciple  of superposi t ion does not hold. 

6 



Iteration. - Using the new epoch s ta te  vector obtained on 
page 6 ,  we compute a new reference  orbit  by integrating the full  
o rb i ta l  equations of motion. Then, we f o r m  the residuals  A r  
and fi t  them in the leas t - squares  sense to  a l i nea r  time-dependent 
vector ( A a  - 1 + A k l t ) .  Once A s l  and A b l  a r e  found, we determine 
a new epoch s ta te  vector ( ini t ia l  conditions - a 2  and b2) according to 

- j  

a = a  + A a  
-7 -. -1 -1 

b = b l + A b  
-2 - -1 

We repea t  the above procedure by calculating a new orb i t ,  com- 
puting the r e s idua l s ,  fitting them to a s t ra ight  line time-dependent 
vector ,  and then updating the epoch s ta te  vector.  The i te ra t ion  i s  
ended when 'IAai I and !Abi  - I a r e  l e s s  than preassigned smal l  
po s i t ive convergence numbers  . 

A s imi l a r  procedure  i s  followed when all the data i s  not 
available simultaneously o r  i f  the t ime in t e rva l  i s  long. F o r  long 
t ime  in t e rva l s  and fo r  r e a l  t ime operation, the r ecu r s ive  fo rmu-  
lation a s  descr ibed below i s  used. If t h e r e  a r e  An d iscre te  posi-  
tion data  points available at the t imes  t l ,  t ~ ,  . . . , tnJ the values 
of the r e fe rence  orb i t  a r e  computed at  these  ( n )  points only. The 
res idua ls  a t  these  ( n )  points a r e  used to es t imate  a correct ion to  
the initially assumed position and velocity vectors  and, hence,  a 
new re fe rence  orb i t .  As m o r e  data points become available,  the 
pred ic ted  values of the new reference o rb i t  a r e  computed a t  the 
t i m e s  corresponding to these new data points, a s  well  a s  at the 
old ones.  The res idua ls  a t  a l l  of these t i m e s  a r e  used to es t imate  
a cor rec t ion  to th i s  new reference  orbit. 
shown schematical ly  in F igu re  1 where the position data becomes  
avai lable  at the r a t e  of one m o r e  point f o r  each re ference  orb i t .  
When the  f i r s t  r e f e rence  orb i t  was computed, the data points A1 
and A 2  w e r e  available,  while when the second and third re ference  
o r b i t s  w e r e  computed, data points A I ,  A 2 ,  A3 ,  and A1, A 2 ,  A3, 
Aq, respect ively,  w e r e  available. 

This  procedure  i s  

7 



Mathematical  Proof of Convergence of Method 

To prove the convergence of the method, de te rminis t ic ,  
ra ther  than s ta t i s t ica l  p roblems,  a r e  used. The difference be-  
tween the two cases  i s  that in  the determinis t ic  c a s e ,  the proce-  
dure converges to the t r u e  o rb i t ,  whereas  in the s ta t i s t ica l  c a s e  
the procedure  converges to an  orb i t  that min imizes  the s u m  of 
the squares  of the residuals .  However, the orb i t  obtained in the 
s ta t i s t ica l  ca se  i s  the t r u e  orb i t  i f  the noise i s  Gaussian.  
noise does not have z e r o  mean,  the orb i t  converges to a biased 
orbit. Therefore ,  the b i a s  mus t  be removed, e i ther  before  o r  
a f t e r  processing the data.  

If the 

The convergence of the method can be proved in the follow- 
ing way. F o r  simplicity,  consider  the f i r s t - o r d e r  equation 

x = f ( x ,  t ) ,  (8 )  

cy 

where f ( x ,  t )  i s  continuous in [ 0 ,  t 3 and sa t i s f ies  the Lipschitz 
condition ( r e f .  9 )  with M 2 0 ,  

Le t  xt and xi be the solutions of Eq. (8)  corresponding to  the 
init ial  conditions at and ai, respect ively,  and le t  

and 

a = a  + A a  (11) i+ 1 i i' 

Then, there  ex i s t s  a t  t > 0 such a t  lim a = a and hence ,  x * x f i t i t ' 
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. 
It i s  known f r o m  the theory of ord inary  differential  equations 

( r e f s .  8 and 9 )  that  for  every ini t ia l  condition ai, t he re  ex is t s  a 
unique continuously differentiable solution xi in [0 ,  t].  
t ions corresponding to the two initial conditions ai and a .  sat isfy 
the inequality ( r e f .  9 )  

N 

The solu-  

J 

F r o m  Eq. (8 )  

and 

x t t  = a +jL f ( x t ,  t )  dt 
0 

Subtracting Eq. (14) f r o m  (13) and dividing by (at - ai) # 0 ( i f  at - 
a = 0 ,  then x = x and, hence,  A a .  = 0 )  leads  to i t i 1 

x - x  

cPi(t) = a - a  
/" [f ( x ty  t )  - f ( X i '  t ) ]  dt. (15)  t i = 1 +  

i o  a - a  
t t i 

Combining Eqs .  (9 )  and (15 )  leads  to 
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. 
Combining ( 1 2 )  and ( 1 6 )  gives 

Therefore ,  the sequence of functions c p .  ( t )  i s  equicontinuous, i. e . ,  

for eve ry  r7 > 0 ,  t h e r e  ex is t s  a 6 given by (eM6 - 1) = (r7/7) such 

that cp . ( t )  - 1 5 (q/7) i f  0 5 t 

1 

6 for  a l l  i. 
1 

F r o m  (10)  and the equicontinuity property,  we find that 

A a ,  

and 

A a i  

a - a .  
t 1 

5 1 - q .  

Hence, 

a - a  t i+l 
a - a  t i 

* v ,  

and 

( 2 1 )  

Therefore ,  fo r  r7 C 1, i. e . ,  f o r  t C (1/M) In (8 /7) ,  
f 

and, hence,  a - + a  and x. -+ x 
i t  1 t '  
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I .  
Computational Demonstrat ion of Convergence and Accuracy  

In ca r ry ing  out the caluclations descr ibed  he re in ,  e x t r e m e  
situations w e r e  s imulated to t e s t  the  pe r fo rmance  of the method. 
The s imulated data  a r e  designed t o  tes t  the non-l inear i ty  of the 
method, i t s  accuracy ,  i ts  operat ion in the  p re sence  of high leve ls  
of no ise ,  and the capabili ty of the method to be  used a s  an editing 
procedure .  In performing the calculations,  a right-handed ea r th -  
centered ine r t i a l  Ca r t e s i an  coordinate s y s t e m  was chosen. The 
ezrth' s grzvitatiozlsl f ield second. and foiirth ha rmon ics  were  in-  
cluded. 
a s  a gene ra l  purpose  multi-equation subprogram.  Double p r e c i -  
sion was employed in  the numer i ca l  integrat ion routine. 
computations a r e  in single precis ion.  

A four th-order  pred ic tor  was used which was mechanized 

All o ther  

In simulating the data ,  the equations of motion were  in te -  
g ra t ed  f o r  two n e a r  c i r cu la r  o rb i t s  and one hundred se t s  of X ,  Y,  
Z ,  posi t ions a t  one hundred sequential  d i s c r e t e  t i m e s  w e r e  
chosen. Nea r -c i r cu la r  o rb i t s  w e r e  used because  they a r e  m o r e  
c r i t i c a l  due to the impor tance  of non-l inear i ty  at  some points in 
these  o rb i t s .  
generated.  Then, posit ional data  i s  obtained by adding the noise  
at the corresponding t i m e s  to the X ,  Y ,  Z posit ions obtained above. 

Gauss ian  noise  with varying s tandard deviations was 

A de terminis t ic  case .  - To demonst ra te  that  the  method i s  
non- l inear ,  the following t e s t  was conducted using de terminis t ic  
data.  

Posi t ional  data  se t s  (e lements  in t h r e e  coord ina tes ) ,  one 
second apa r t ,  w e r e  computed f r o m  a n e a r - c i r c u l a r  orb i t  ( r e f e r r e d  
to a s  " t rue"  orb i t )  with a per iod of approximately 90 minutes  and 
a n  incl inat ion of about 45". The epoch s ta te  vector  (init ial  pos i -  
t ion and  velocity vec tors )  for  th i s  t rue  orb i t  i s  given in the f i r s t  
row of Table  1. 

An in i t ia l  r e f e rence  orb i t  was computed using an  a s sumed  
in i t ia l  velocity of ze ro  and initial coordinates differing by 
1 , 0 0 0 ,  000 fee t  f r o m  the t rue  values. It i s  worth noting that these  
in i t ia l  g u e s s e s  a r e  much worse  than might  be expected in a p r a c -  
t i ca l  si tuation. This  was done to demonstrate  the abil i ty of the 
new method to handle very  poor initial g u e s s e s  of the r e fe rence  
orb i t .  The r e c u r s i v e  formulat ion of the  proposed method, a s  
d e s c r i b e d  above, was  used to  process  th i s  data  a t  the r a t e  of one 
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more  point fo r  each new reference  orbi t .  
vectors  obtained f r o m  process ing  2 ,  20 ,  and 27 points a r e  shown 
in  Table 1. 

The updated epoch s ta te  * 

Table 1 shows the rapid convergence of the init ial  conditions 
of the re ference  o rb i t s  to those of the t r u e  orbi t .  
row,  it can be seen that ,  a f t e r  processing only the f i r s t  two points,  
t he  initial position coordinates  converged exactly to those of the 
t r u e  orbi t .  A s  seen f r o m  the l a s t  row of Table  1, the ini t ia l  ve-  
locity converged exactly to that of the t r u e  orb i t  a f t e r  process ing  
27 points. Therefore ,  the method converges to the t r u e  o rb i t ,  
i r respec t ive  of how bad the ini t ia l  re fe rence  o rb i t  i s  and, hence,  
t he  method i s  non-linear.  

F r o m  the third 

Statist ical  cases .  - To show that the combined effect of very 
bad initial guesses  and the p re sence  of high levels of noise  does 
not affect the convergence of the proposed method, the following 
t e s t s  w e r e  conducted. 

Two different near -c i rc i i la r  o rb i t s ,  a t  an inclination of 45" 

The epoch s ta te  
and with per iods of approximately 90 minutes  and 24 hours  ( r e -  
f e r r e d  to h e r e  a s  "true" o r b i t s ) ,  w e r e  used. 
vectors fo r  these o rb i t s  a r e  given by the f i r s t  rows of Tables  2 
and 3 ,  respectively.  One hundred sequential  positional data  points,  
10 seconds apa r t ,  w e r e  obtained by adding different levels  of 
Gaussian noise  to these  t r u e  orb i t s .  
computed t h r e e  cases  having noisc  with a s tandard deviation of 
IO2, l o 4 ,  and 10" feet ,  respect ively (Table  2) .  
c a se  of the 24 hour orb i t ,  the noise  was  even higher:  
and lo7  feet .  The same  ridiculous guess  of the ini t ia l  conditions 
used in  the previous case  i s  used i n  all of these  c a s e s .  

F o r  the 90-minute o rb i t ,  we 

F o r  the second 
l o 4 ,  l o 6 ,  

The recurs ive  formulat ion of the new method was used i n  
processing this  data a t  the r a t e  of one m o r e  point f o r  each new 
reference  orbit .  
a r e  shown in Tables  2 and 3 .  
in F igures  2 and 3 .  

The resul tant  epoch s ta te  vec tors  and the e r r o r s  
The  res idua ls  vs  t ime  a r e  presented  

Tab les  2 and 3 show that the epoch s ta te  vector  converged to 
those of the t r u e  o rb i t s  with excellent accuracy .  F r o m  rows 3 ,  5, 
and 7 ,  it can  be  seen that the e r r o r s  m a d e  in  es t imat ing the t r u e  
epoch s ta te  vector were  indeed v e r y  small. F i g u r e s  2 and 3 r e -  
f lec t  the f a c t  that the res idua ls  a r e  random. The re fo re ,  the 
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proposed method f i l t e red  the noise  f r o m  the orb i t  very  well ,  i r r e -  
spective of how high the noise  leve l  was and i r r e spec t ive  of the 
bad guess  of the ini t ia l  conditions. 

Editing capability. - To show that the new method can  be 
used a s  an editing procedure ,  the following t e s t  was conducted. 

Posi t ional  data  se t s  were  obtained by adding random noise  
with lo7 fee t  s tandard deviation and 25 wild data  points (differ ing 
fi=oTii the t r u c  s r b i t  by 10' feet)  tc! ;1 nea r -c i r cu la r  orb i t  with a 
per iod of 24  and an  inclination of 45". The s a m e  initial condi- 
t ions used previously were  employed. The res idua ls  vs t i m e  a r e  
plotted in F i g u r e  4. 

Despi te  the combined effect of a high level  of noise ,  the 
p re sence  of wild points and the bad guess of the initial conditions,  
the proposed method converged, while the  conventional e s t i m a -  
tion method might "blow up" s ince they depend on the l inear i ty  
assumption.  As expected, the mean  of these  res idua ls  i s  not 
ze ro ;  
(ou t l ine r s )  can eas i ly  be eliminated. Then, a new es t ima te  i s  
made  and the p r o c e s s  i s  repeated.  
method can be used a s  an editing procedure  and that the method i s  
cer ta in ly  non-l inear  . 

data  points lying outside predetermined d ispers ion  l imi t s  

This shows that the proposed 

DETERMINATION OF PERTURBATIVE FORCE PARAMETERS 

The  procedure  descr ibed  in the preceding section can be 

In pr inciple ,  the 
eas i ly  adapted to de te rmine  unknown p a r a m e t e r s  in  the equations 
of motion in addition to the orb i ta l  elements.  
p rob lem of determining a constant pa rame te r  ( A )  in  the equations 
of motion i s  equivalent to adding a new equation (dA/dt) = 0 to 
t h e s e  equations and determining the  ini t ia l  conditions f o r  the new 
s e t  of equations.  In the r e s t  of t h i s  sect ion,  we will desc r ibe  the 
extension of the procedure  descr ibed e a r l i e r  i n  o r d e r  to d e t e r -  
mine  the  aerodynamic  p a r a m e t e r s  and we will give the r e s u l t s  of 
a s imula ted  numer i ca l  case.  

F o r  s implici ty ,  we cons ider  the determinat ion of constant 

The equations of motion of a point m a s s  under the 
d r a g ,  l if t ,  and s ide-force p a r a m e t e r s  in addition to the o rb i t a l  
p a r a m e t e r s .  
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influence of lift,  d rag ,  and s ide- forces ,  a s  well  a s  gravi ta t ional  
fo rces  in a ear th-centered- iner t ia l  coordinate sys t em a r e  

“I ( 2 2 )  
1 2 1 -  1 -  - -  a2; - - g r a d U + - p g V a [ - p e D + ; e L + ~ e S  

2 2 
d t  

where i s  the position vec tor ,  U i s  the gravi ta t ional  potential ,  p 
is  the air density,  and g i s  the gravi ta t ional  constant ,  p = (W/CDA), 
q = (W/CLA),  and < = (W/CSA). 
CD, CL, and CS fo r  d rag ,  lift,  and s ide- force ,  respect ively.  W 
i s  the weight and A i s  a cha rac t e r i s t i c  a r e a  of the vehicle.  Since 
the a tmosphere  i s  a s sumed  to ro ta te  with the E a r t h ,  the re la t ive  
velocity vector  of the vehicle with r e spec t  to the a tmosphe re  3, i s  
given by 

The aerodynamic coefficients a r e  

-+ d? - - +  
V = - - Oxr  

a d t  

where w i s  the angular  rotation vec tor  of the Ear th .  
ations a r e  included, then the re la t ive  velocity 3 i s  

a 

+ 
-+ d r  - 4  v = - - w x r - 3  

a d t  w 

If wind v a r i -  
given by 

where 3, i s  the wind velocity. 
a r e  defined by 

The unit vec tors  eD,  eL,  and eS 

4 4  

( 2 5 )  
D , e = -  

5: x (TXZD) rxe  

D lTa1’ e L = r S r 
+ a 4 D 

V 
-.) 

e =  

T O  determine the aerodynamic  p a r a m e t e r s  p, q, and a s  wel l  a s  
the  initial conditions of the t r a j e c t o r y  f r o m  m e a s u r e m e n t s  that  
provide complete posit ion f ixes ,  we p ropose  the  following method. 
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a. 

b. 

C. 

d. 

We f i t  the  f i r s t ,  say,  ten data points to a s t ra ight  l ine 
t ime-dependent vector zo + cot i n  l ea s t - squa res  sense.  
We choose zo and go to  be the ini t ia l  posit ion and ve- 
locity of the t r a j ec to ry  and guess values f o r  p, 7, and 
<. 
and the ini t ia l  position and velocity, we calculate a 
r e fe rence  t r a j ec to ry  by integrating Eqs.  ( 2 2 )  - (25) ,  
and calculate  the ini t ia l  acce le ra t ion  zo. 

Using these  values f o r  the aerodynamic  p a r a m e t e r s  

We f o r m  t h e  residua? differences hetween the measu red  
d i s c r e t e  data  points and the va lues  obtained f r o m  the 
computed re ference  t r a j ec to ry  at the corresponding 
t imes .  
to a parabol ic  t ime-dependent vec tor  AZO + Abot + 
1 4 2  TAcot . 

We fit these  res idua ls  in a l ea s t - squa res  sense  
+ 

We update the ini t ia l  position, velocity, and a c c e l e r a -  
tion. Thus,  

+ - + 1  
a = a  +-a2 

l o 2 0  

1 b' = 6  + - A 6  
l o 2 0  

-+ + 1  
c = c  + - A ;  

l o 2 0  

Only half of the cor rec t ions  w e r e  applied in o r d e r  to 
a c c e l e r a t e  the convergence 

The new initial posit ion,  velocity, and acce lera t ion  ob- 
tained in  ( c . )  a r e  substituted in  Eqs.  ( 2 2 )  - (25).  
values f o r  p,  q, and < and the new ini t ia l  posit ion g1, 
and velocity bl ,  we calculate a new re fe rence  o rb i t  and 
continue s teps  (b. ) through (e.  ) until the  change in 
in i t ia l  PO sition, velocity, and acce lera t ion  i s  s m a l l e r  
than some assigned convergence numbers .  

New 

4 

The p rocedure  descr ibed  above h a s  been p rogrammed  f o r  
t he  de te rmina t ion  of the d rag  p a r a m e t e r  p (ba l l i s t ic  coefficient). 
We p r e s e n t  h e r e  the r e su l t s  of a tes t  c a s e  which has  been conducted 
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using th i s  program.  A t r a j e c t o r y  of a vehicle ( r e f e r r e d  to h e r e  a s  
t rue t r a j ec to ry )  with f3 = 2 5  lb/fta, CL = Cs = 0 was simulated.  One 
hundred and fifty positional data s e t s ,  one-tenth of a second a p a r t ,  
were computed by integrating the equations of motion using the ini-  
t ial  conditions f o r  position and velocity as  shown in the f i r s t  row 
of Table 1. Random noise  of s tandard deviation of 250 feet  was  
generated. Then, posit ional data i s  obtained by adding the gene r -  
ated noise  at the corresponding t imes  to the X ,  Y ,  Z posit ions ob- 
tained above. 

The above mentioned method was  used i n  processing the data.  
A ve ry  bad ini t ia l  guess  of 2000 lb/ft" f o r  p was used, and the in i -  
t ial  guesses  f o r  position and velocity a re  shown in  the second row 
of Table 1. It i s  worth noting that the init ial  guess  f o r  velocity i s  
very bad. F igure  5 shows the rapid convergence of 6. Thus, i n  
spite of the v e r y  bad guess  f o r  the velocity and the ba l l i s t ic  C O -  

efficient and i n  spite of the p re sence  of noise ,  the procedure  con- 
verged to  the simulated ba l l i s t ic  coefficient. 

CIS - L U N A R  ORBITS 

Since c i s - l u n a r  sa te l l i t es  a r e  t racked by senso r s  on o r  n e a r  
the E a r t h ,  range and range r a t e  a r e  the only rel iable  m e a s u r e -  
ments.  Thus,  complete re l iable  positional coordinates a r e  not 
available f o r  c is- lunar  orb i t s .  The re fo re ,  the objective of th i s  
section i s  to ( a )  extend the non-l inear  method to de te rmine  the 
best  es t imate  of the orb i t  of a sa te l l i t e  using range data only, o r  
range and range r a t e  data  only, ( b )  
to determine cis- lunar  o rb i t s ,  ( c )  present  non-linear l e a s t -  
squares  and maximum likelihood methods f o r  o rb i t  determinat ion.  

present  a quasi l inear  method 

Extension of Method to Cis -Lunar  Orbi t s  

T o  s t a r t  the computations,  a r e fe rence  o rb i t  i s  needed. If 
a n  initial o rb i t  i s  not known, an  in i t ia l  o rb i t  can be  de te rmined  
using the non-linear method a s  explained previously utilizing the 
angle measu remen t s  a s  well  a s  t he  range  data. We choose t h r e e  
different t i m e s  T I ,  T 2 ,  T3  to  be  the  ini t ia l  t ime  and two l a t e r  
t imes n e a r  T i .  We de te rmine  the range  R,(Ti), range r a t e  
R0(Ti), and k o ( T i )  f o r  i = 1, 2 ,  and 3. 
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Case  of range data only. - The extension of this method to 
this  ca se  cons is t s  of the following steps: 

(a)  Leas t - squa res  fi t  of the residuals :  W e  f o r m  the  r e -  
s iduals  between the measu red  d i sc re t e  range data  
points and the computed va lues  f r o m  the r e fe rence  
orb i t  a t  the corresponding t imes .  These  r e s idua l s  
A R j  a t  t i m e s  t j  a r e  fitted in the l ea s t - squa res  sense  
to the parabol ic  function of t i m e  Aao + Abot + Acot2. 

(b )  Updating of R ,  R ,  and R at T i ' s :  
and R at Ti ,  i = 1, 2 ,  and 3 a r e  updated according to 

The values  of R ,  R ,  

( 2 9 )  
2 

1 1  0 1  0 0 1  o i  R ( T . )  = R ( T . )  + A a  + Ab T.  + Ac T 

k ( T . )  = R ( T . )  + A b  + 2 Ac T 
1 1  0 1  0 o i  

(31) 
0 

R (T . )  = R ( T . )  + 2 Ac 
1 1  0 1  

i = 1, 2 ,  and 3 .  

( c )  Iteration: Using the new range and range r a t e  at the 
different t i m e s  T i ,  T2, T3, o r  using R ,  R ,  and R a t  
T I  and T2 we calculate a new re fe rence  orbit .  Then 
we f o r m  the res idua ls  for  the range and fit them in 
l ea s t - squa res  sense  to a polynomial. We update R ,  
R ,  and R a t  the t h r e e  different t imes  as  in  ( b )  above. 
Then a new re fe rence  o r b i t  i s  computed and the  p r o -  
cedure  i s  repeated until the  i te ra t ions  converge.  

Case  of range and range r a t e  data  only. - The extention of 
the  method to th i s  c a s e  cons is t s  of the following steps: 

(a) Leas t - squa res  f i t  of the residuals :  We f o r m  the  r e -  
s iduals  between both the m e a s u r e d  d i sc re t e  range  and 
range  r a t e  data points and the  computed va lues  f r o m  
the  r e fe rence  orbi t  a t  the corresponding t imes .  The 
range  res idua ls  AR. at t i m e s  t a r e  fitted in the J j 
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l ea s t - squa res  sense  to Aao + Abot + A c  t2 while the 
range r a t e  r e s idua l s  AR 
Ak0t . 
Updating of R ,  R ,  and R a t  T i ' s :  The va lues  of R ,  R ,  
and R a t  the t i m e s  Ti ,  i = 1, 2 ,  and 3 a r e  updated a c -  
cording to 

0. 
a r e  fi t ted to Aao + Abot + 

2 j 

( b )  

2 
+ A b  T .  + A c o T i  R ( T . )  = R ( T . )  + A a  

1 1  0 1  0 0 1  

2 R ( T . )  = R ( T . )  + Aao  + A b  T.  + Ac T .  
1 1  0 1  0 1  0 1  

(33) 

R ( T . )  = R ( T . )  + A b  + 2 A; T (34)  
1 1  0 1  0 o i  

i = 1, 2 ,  and 3 

( c )  I teration: Using the updated range and range  r a t e s  a t  
T i ,  T2 ,  and T3,  we calculate  a new re fe rence  orbi t .  
Then we f o r m  the range and range r a t e  res idua ls .  We 
f i t  each in the l ea s t - squa res  sense  to a parabola .  Then ,  
we update R ,  R, and R a t  T1, T2 ,  and T 3  a s  in  ( b )  
above. 
until i t e ra t ions  converge.  

We continue the p r o c e s s  f r o m  (a )  through ( c )  

Determinat ion of an orb i t  using R and k a t  t h r e e  different  
t imes  o r  R ,  R ,  and R a t  two different t imes .  - The extension of 
the non-linear orb i t  determinat ion method to c i s - lunar  o rb i t s  i s  
reduced to the problem of determining the orb i t  of a sa te l l i t e  u s -  
ing R and R a t  t h r e e  dis t inct  t i m e s  o r  R ,  R ,  and R a t  two t i m e s .  
The t imes  a r e  c lose  to each o ther  and th i s  fact  can be used to 
advantage a s  will be l a t e r  explained. Thus,  the f i l t e r ing  p rob lem 
in the c i s - luna r  c a s e  i s  reduced to a multipoint boundary-value 
problem; whereas  the f i l ter ing p rob lems  in  the c a s e s  of E a r t h  
orb i t s  and ba l l i s t ic  t r a j e c t o r i e s  w e r e  reduced to ini t ia l -value 
problems.  The solution of ini t ia l  value p rob lems  i s  s t ra ight -  
forward and we compute an  orb i t  using the updated s t a t e  vec tor .  
In the c a s e  of multipoint boundary-value p rob lems ,  the solution 
i s  not s t ra ightforward.  The two d imens iona l  p rob lem of d e t e r -  
mining a n  orb i t  using range  and range  r a t e s  h a s  been t r e a t e d  in 
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r e fe rence  10 ,  and the three-dimensional  ca se  h a s  been t r ea t ed  in 
r e fe rence  11 using the method of quasi l inear izat ion ( r e f .  1 2 ) .  We 
will p re sen t  h e r e  the solution presented in  r e fe rence  11, and we 
will extend the ana lys i s  of r e fe rence  11 to  apply the method of 
quasi l inear izat ion to the problem of determining a n  orb i t  using R ,  
R ,  and R at two dis t inct  t imes .  

L e t  the coordinates  of the origin with r e spec t  to the s e n s o r  
be given by the known vec tor  e ( p 1 ,  p 2 ,  p 3 ) ,  and let  the coordin- 
a t e s  of the satel l i te  with r e spec t  to  the =rigin be given by the 
vec to r  - r ( r l ,  r2 ,  1-3). 
r e spec t  to the senso r  a r e  given by the vec to r  

Then, the coordinates of the satel l i te  with 

where  R i s  the magnitude of 2 + e and 2 i s  a unit vec tor  in the 
d i rec t ion  of - r +e. Dotting Eq. ( 3 5 )  by itself  l eads  to 

Differentiating Eq. ( 3 5 )  with respec t  to t ime yields  

Since - -  e. e = 1, then - -  e. e = 0. 
l eads  to  

Hence, dotting Eq. ( 3 5 )  with Eq. ( 3 7 )  

(- r + h )  ( ~ + e )  = R R .  

Different ia t ion of Eq. ( 3 7 )  yields  

- r + & = R e + 2 R e + R e  - - - ( 3 9 )  

19 



Dotting ( 3 5 )  and ( 3 9 )  l eads  to 

2 . .  
( r  - +i) (:+e) = R R  + R  -- e . e  

Since &.e = 0,  we get 

.. . .  
e.  e = - e . e  

Dotting Eq. ( 3 7 )  by itself  l eads  to 

- 2  2 .  . ( i + h )  ( i + h )  = R + R  - -  e . e  

Combining Eqs.  ( 4 0 )  - ( 4 2 )  yields  

Equations ( 3 6 ) ,  ( 3 8 ) ,  and ( 4 3 )  evaldated a t  T I ,  T 2 ,  and T 3  con- 
stitute nine conditions fo r  the de te rmina t ion  of the orb i t .  
of these conditions a r e  enough f o r  the determinat ion of the orb i t .  

Any s ix  

The  equations represent ing  the motion of the sa te l l i t e  a r e  
given by 

i: = f ( r ,  t )  - -  (44)  

Or in component f o r m ,  

( 4 5 )  
.. 
x = f .  ( x l ,  x2,  x3,  t ) ,  i = 1 ,  2,  and 3 

i 1  

The method of quasi l inear izat ion i s  a n  i t e r a t ive  p rocedure ,  let  

xktl be  the ( k + l ) -  th i t e ra t ion ,  then 
1 

2 0  



- x k j  
k+ l  k ' k + l  
i 1 1 1 

X = x. + (x. 

Substi tuting(46) in the right-hand side of (45), expanding the functions 

f . '  s i n  powers  of (xk" - x. 

l eads  to 

k' 
and retaining only the l inear  t e r m s  

1 1 

3 

j = 1  

. .k+ l  / k  k k 
X 
i 1 

o r  

k 
Bk. xk+l  + Ai 

3 

1 1J  J j = l  

X. . .k+l  = 

where  

a f i  k k k Bk = - ( x l y  x2'  x3' t 
i j  ax 

j 

3 

j = l  

Ai k = f i  (x:' xEy xFy t )  - k k  
i j  j 

X ( 4  

The above equations consti tute simultaneous l i nea r  inhomogeneous 
equat ions f o r  the xk+l with coefficients that  depend on the i t e r -  
ation. 
l i n e a r  independent solutions of the homogeneous equations r e p r e  - 
sented  by (48) '  then the gene ra l  solution of (48)  can be given by 

Lf 2 i s  the pa r t i cu la r  solution and 2 1 ,  3y . . . ' 2 6  a r e  six 

where  the c ' s a r e  a r b i t r a r y  constants. 
i 
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The i te ra t ive  procedure  cons is t s  of the following steps: 

Z i  and p a r e  computed by numer ica l  integrat ion of (48) 
s ta r t ing  with a suitable ini t ia l  o rb i t  ( such  a s  the  orb i t  
obtained using the angles  a lso) .  The t ime  needed for  
numer ica l  integrat ion can be shor t  and it needs  to be 
c a r r i e d  only f r o m  T 1  to T2,  o r  T3. 

The  values  of zi and p at the t imes  Ti a r e  noted, and 
using these  v a l u e s ,  the express ions  (50) a r e  subs t i -  
tuted in  any s ix  of the equations represented  by (36) ,  
(38) ,  and (43)  to give equations f o r  the c s. 

i 

These  s ix  simultaneous quadrat ic  a lgebra ic  equations 
a r e  solved fo r  the  c s and a new orb i t  i s  obtained. 

i 

Using the values of - x and - A, say  a t  time T I ,  the  full  
equations (44)  a r e  integrated,  and a check i s  m a d e  to 
s e e  whether th i s  orb i t  sa t i s f ies  all of the nine condi- 
t ions (36),  (38) ,  (43) ,  to the requi red  degree  of ac-  
curacy.  If not, s ta r t ing  with the new orb i t ,  Eq. (48)  
i s  integrated numer ica l ly  and the  s teps  f r o m  (a)  to  
(d)  a r e  continued until the  conditions ( 3 6 ) ,  (38) ,  and 
(43)  a r e  sat isf ied to the requi red  degree  of accuracy .  

Solutions of s imultaneous quadrat ic  equations. - In c a r r y -  
ing out the quasi i inear izat ion p rocedure ,  a solution of s ix  s imul-  
taneous quadrat ic  equations is  needed. 
solved numer ica l ly  s tar t ing with an ini t ia l  guess  f o r  the values  of 
c i t  s and l inear ize  the equations to c a r r y  the solution in  acco rd -  
ance with the Newton-Raphson p rocedure ,  which i s  a spec ia l  c a s e  
of quasil inearization. However, the  i t e r a t ions  requi red  to obtain 
the  solutions of these s e t s  of equations m a y  d iverge  o r  converge 
to a different solution. The resu l tan t  orb i t  can be checked using 
the  three  redundant conditions in ( 3 6 ) ,  (38) ,  and (43) ,  and the 
init ial  o rb i t  obtained using the  angles  a lso.  Moreove r ,  the s u m  
of the squa res  of the r e s idua l s  using th i s  o rb i t  m u s t  be l e s s  than 
o r  equal to  the s u m  of the s q u a r e s  of the r e s idua l s  obtained using 
the  previous orbit .  
orbit ,  a new guess  will be used,  and the p rocedure  i s  repeated.  
To solve the  problem of d ivergence ,  we will  u s e  the re f inement  
proposed by Kane ( r e f .  13) to the  Newton-Raphson p rocedure .  

These  equations can b e  

If the i t e r a t ions  converged to  a different 

2 2  



To obtain a value of the vector  - x that  sa t i s f ies  the a lgebra ic  
vec tor  equations 

Kane r e g a r d s  x a s  a function x (7) of a s c a l e r  var iab le  7 which 
takes  on the values between z e r o  and unity. He a s s u m e s  that  

where  k i s  the ini t ia l  guess  of the solution, and h e  r equ i r e s  that  
- x ( T )  sa t i s f ies  

Differentiating Eq. (53)  with respec t  to 7 l eads  to 

where  [ F ' ( x ) ] - l  - -  i s  the inve r se  of - -  F'(x) .  
f r o m  T = 0 to  7 = 1. 
p r o c e d u r e  converges i r r e spec t ive  of the initial conditions. 

Kane in tegra tes  Eq. (54)  
Then, - x(1) i s  the requi red  answer.  This  

2 3  



Cis  -Lunar  Orbit  Determinat ion Using Quasi l inear izat ion 

As a n  al ternat ive method to c i s  - lunar  orbi t  determinat ion,  
we extend the analysis  of r e fe rence  11 to apply to s ta t i s t ica l  range  
and range r a t e  data.  
m ent s that  min imize  

Thus,  we want to de te rmine  the orb i ta l  e l e -  

where the subscr ip t  i r e f e r s  to quantit ies evaluated a t  t ime  t i ,  and 
wi and Wi are  weighting functions. 

The method i s  an i t e r a t ive  p rocedure  and it cons is t s  of the 
following steps:  

An ini t ia l  o rb i t  i s  assumed.  

z . and 2 a r e  computed f r o m  (48)  using the above 
-J 
initial orbi t .  

The  values.of z 

into (55).  

and 2 a r e  de te rmined  a t  the d i s c r e t e  
t imes  t i ' s  and -il t e expres s ions  (50)  a r e  substi tuted 

Expres s ion  (55)  i s  min imized  with r e spec t  to the c i '  s. 

The resul tant  non-l inear  a lgeb ra i c  equations f o r  the 
c i '  s a r e  solved using Kane '  s ref inement  of the 
Newton-Raphson procedure .  

Using - x and - x a t  the in i t ia l  t i m e  t l ,  a new o rb i t  i s  
calculated.  

Using the orb i t  obtained i n  ( f )  a s  in i t ia l  o rb i t ,  the  
p rocess  f r o m  ( b )  to ( f )  i s  repea ted  until i t e r a t ions  
converge.  
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A Non-Linear Maximum Likelihood Method 

In this section, we present  another a l ternat ive method to 
orb i t  determination in genera l  and cis-lunar orb i t s  i n  par t icu lar .  
The method i s  a non-linear maximum likelihood method ( the  
l ea s t - squa res  i s  a special  ca se )  in contrast  with the conventional 
methods that a r e  based on the differential correct ion.  

Suppose that the measu remen t s  a r e  represented  by the n- 
dimensional vector  a = s + n,  where  s i s  an n-dimensional  signal 
vector  to be m e a s u r e d  and n i s  an n-dimensional noise vector .  
The problem i s  to de t e rmine  the orbital  elements c l ,  c2 ,  . . . , 
using these  measu remen t s .  The measurement  res idua ls  e a r e  
given by 

C N  

N e = a - s (cl, c2 ,  ..., 
If the covariance of the measu remen t  e r r o r  i s  given by the m a t r i x  
R ,  then the loss  function L i s  given by 

T -1 T -1 
L = e  R e = ( a - s )  R ( a - s )  

where  eT  denotes the t ranspose  of the m a t r i x  e ,  and R - l  i s  the 
inve r se  of R. If the measu remen t  e r r o r s  a r e  uncorrelated,  then 
R i s  a diagonal m a t r i x  and L i s  given by 

2 
n +..., f -  L = - + -  
nn 

e 

R 

2 
2 

e 2 
1 

e 

R1l R 2 2  
( 5 7 )  

which i s  a weighted sum of the squares  of the residuals .  
weights a r e  inverse ly  proportioned to the expected mean  square  
value of the measu remen t  e r r o r .  
of the e r r o r  in a given measu remen t  i s  l a rge ,  then the effects of 
the assoc ia ted  measu remen t  residual on the sum i s  reduced. 

The 

Thus, i f  the mean  square  value 

The  max imum likelihood est imate  of the orbi ta l  e lements  i s  
the one that max imizes  exp ( - L ) ,  and hence,  min imizes  the loss  
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function L. 
the  n-dimensional vec tor  c y  then the maximum likelihood e s t i -  
mate  i s  given by solution of 

If we cons ider  the orb i ta l  e lements  to be denoted by 

I 

a s  -1 a s '  -1 
a c  a c  R a - -  R s = O  - 

CN These a r e  N simultaneous a lgebra ic  equations for  c l ,  c2 ,  . . . , 
which a r e  non-l inear  in  general .  
low Kane by assuming that c = c(T), and we let 

To solve this  sys t em,  we fol-  

where k i s  the ini t ia l  e s t ima te  for  the orb i ta l  e lements .  
different ia t ion of (59)  with r e spec t  to T l eads  to 

Then ,  

L J 

1 

J c = k  

The sys t em of equations,  r ep resen ted  by ( 6 0 )  i s  solved f r o m  
7 = 0 to 7 = 1. Then, the des i r ed  o rb i t a l  e lements  a r e  given by 
c (1). 
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CONCLUSIONS 

A method f o r  orb i t  determinat ion i s  presented.  The con- 
vergence  of the method, i n  c a s e  the data furn ishes  the complete  
coordinates  of the object (i. e . ,  all Car tes ian  o r  spher ica l  coor -  
d ina tes )  does not depend on a good initial guess  to the r e fe rence  
n r h i t .  In the calculations made ,  even though ve ry  bad ini t ia l  
r e f e r e n c e  o rb i t s ,  ex t remely  high levels of no ise ,  wild da ta  points,  
and c r i t i c a l  o rb i t s  ( n e a r  c i r c u l a r )  a r e  used,  the i te ra t ion  con- 
verged. Thus,  the method i s  a non-linear technique. This  i s  i n  
cont ras t  with the conventional es t imat ion p rocedures ,  such a s  the 
l ea s t - squa res ,  the maximum likelihood, and the Kalman f i l t e r ,  
which depend on the l inear  assumption. In cont ras t  with the con- 
ventional es t imat ion p rocedures ,  the new method does not r equ i r e  
t rans i t ion  and n o r m a l  m a t r i c e s  and, hence,  avoids the p rob lems  
assoc ia ted  with calculating and inverting them. 
of the pa r t i a l  der ivat ives  constituting the t rans i t ion  m a t r i c e s ,  
e i ther  numer ica l ly  o r  analytically,  and the invers ion  of the n o r -  
mal m a t r i c e s ,  r equ i r e  an expenditure of computer  t ime.  The 
new method gives excellent accu rac i e s ,  
Tables  2 and 3 ,  under the ex t r eme  conditions of the very  high 
leve ls  of no ise  and initial conditions which a r e  f a r  f r o m  being 
nominal.  

The calculation 

a s  can be seen  f r o m  

The method h a s  been extended to the determinat ion of the 
bes t  e s t ima te  of the orb i t  a s  well  a s  any unknown p a r a m e t e r s  in 
the equations of motion. 
de te rmina t ion  of aerodynamic p a r a m e t e r s  i s  p resented .  
m e r i c a l  ca se  fo r  the de te rmina t ion  of the  bal l is t ic  coefficient 
showed that  the method converges to the c o r r e c t  value i r r e s p e c -  
t ive  of the bad ini t ia i  guess  of the velocity and the bal l is t ic  
co ef f i c i  ent . 

An extension of this  method f o r  the 
A nu- 

The  method h a s  been extended to apply f o r  c i s - lunar  orb i t s .  
The  re l iab le  observat ions in this  case consis t  of range data  only, 
o r  range  and range r a t e  data  only. 
mina t ion  problem h a s  been reduced to the determinat ion of an 
o rb i t  using range and r ange  r a t e  a t  t h ree  different t i m e s  tha t  can 
be taken  to  be  close to each o ther .  
t ion can  be used t o  de te rmine  the orbit. As a resu l t  the problem 

The c i s - lunar  orb i t  d e t e r -  

The method of quas i l inear iza-  

2 7  



reduces fur ther  to the solution of s e t s  of quadratic a lgebraic  equa- 
tions. A refinement of the Newton-Raphson procedure,  proposed 
by Kane, can be used to solve these equations. 

An al ternat ive method based on quasil inearization i s  p r e -  
sented f o r  the determination of c is- lunar  orb i t s .  A l s o ,  non-linear 
leas t - squares  and non-linear maximum likelihood methods have 
been presented.  
methods to obtain numer ica l  answers  and compare  the r e su l t s  of 
these t h r e e  methods.  

Work s t i l l  needs to be done to p rogram these  

2 8  
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F i g .  1 A sketch that shows the r ecu r s ive  formulat ion 
of the method 
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F i g .  2 Orbi ta l  Residuals  vs .  T i m e  for  a near  c i r c u l a r  
orbi t ,  with a period of approximate ly  24 hours  
and an  inclination of about 45" ,  with a r andom 
noise  of s tandard deviation of 106 ft. 
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Fig .  3 Orbital  Residuals  vs. Time for  a nea r  c i r cu la r  
orbi t ,  with a period of approximately 24 hours  
and an inclination of about 45” ,  with a random 
noise of s tandard deviation of l o 7  ft. 
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Fig. 4 Orbital  Residuals  vs.  T i m e  a f t e r  processing da ta  
that i s  corrupted by noise of 107 f t  s tandard 
deviation and 2 5  wild da ta  points. 
the Heliodyne Method can be used a s  a n  editing 
procedure.  

I t  shows that  
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Fig .  5 Bal l i s t ic  coefficient (8) vs.  number  of i terat ions 
f o r  a simulated t ra jec tory  of a vehicle with ,8 = 25  
lb / f t2  and with a random noise  of standard devia-  
tion of 250 f t .  F i r s t  guess fo r  /3 was 2000 lb/f t2 .  
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